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Figure 1: Simulation results showcasing various types of contacts, generated solely by our method with XPBD.

Abstract
We present a unified, primitive-first framework with DCD for collision response in physics-based simulations. Previous methods
do not provide sufficient solutions on a framework that resolves edge-triangle and edge-edge collisions when handling self-
collisions and inter-object collisions in a unified manner. We define a scalar function and its gradient, representing the distance
between two triangles and the movement direction for collision response, respectively. The resulting method offers an effective
solution for collisions with minor computational overhead and robustness for any type of deformable object, such as solids or
cloth. The algorithm is conceptually simple and easy to implement. When using PBD/XPBD, it is straightforward to incorporate
our method into a collision constraint.
CCS Concepts
• Computing methodologies → Collision detection;

1. Introduction

Collision handling for deformable objects are challenging problems
and active areas of research in computer graphics. Collision of ob-
jects assuming the real world involves various types of problems.
Examples of possible collision scenarios are shown in Figure 1. For
instance, a collision between two rectangular objects presents a sim-
ple problem with few meshes, but it is essential to ensure that edge
intersections are detected. In the case of elastic object collisions,
self-collision and inter-object collisions can occur simultaneously.
Multi-layered objects, such as garments or onions, often already
have intersections or contacts when the simulation begins. When
considering collision handling, several factors must be taken into
account: the type of collision (inter-collisions or self-collisions), the

type of object (solid or surface), the initial state (intersection-free
or not), and the collision location (at a point or on an edge).

Collision detection techniques are typically divided into Contin-
uous Collision Detection (CCD) and Discrete Collision Detection
(DCD). In recent years, Incremental Potential Contact [LFS*20],
a widely used technique for collision handling, has emerged as a
prominent method within CCD. CCD requires both starting with
and maintaining an intersection-free state. In contrast, DCD allows
for the handling of intersections that occur after collisions and re-
solving them through a three-step process: 1. Finding contact points
for penetrated points, 2. Calculating the penetration measure, and
3. Computing the direction of movement for collision response.

Previous work on collision response can be broadly classified
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into point-based and integral-based methods. Point-based meth-
ods [MEM*20; MZS*11; MASS15; FSG03; GBF03] generate the
closest points on the surface to penetrating points. Most penetrat-
ing points are chosen from the vertices of the object, but in cases
using Signed Distance Fields (SDFs), points on edges may also
be included. Point-based methods are conceptually simple, and
each proposed method addresses either a self-collision problem
or an edge-edge intersection problem. However, it is not feasible
to integrate existing specialized methods to address both issues.
Only SDF-based methods handle arbitrary points on edges, but
they struggle with self-collisions. On the other hand, integral-based
methods [AFC*10; WFP12; ZMSL23] avoid these issues, but they
can only be applied to solid objects or may exhibit low robust-
ness depending on the initial states. Ultimately, no approach has
been provided that can address all collision cases within the same
framework.

The collision problems encountered in previous studies can fun-
damentally be addressed as triangle intersection problems. At the
triangle primitives level, the following types of contacts can occur:
point-triangle, edge-triangle, point-point, edge-edge, point-edge,
and triangle-triangle contacts. Notably, all these contacts can be
reduced to combinations of point-triangle and edge-edge interac-
tions. In this paper, we propose a unified framework for addressing
all issues at the triangle primitives level. While the geometric re-
lationships of triangles have been a focus in collision detection,
they have not, to our knowledge, been applied to handle collision
response. However, we found that this geometric information is suffi-
cient to address aforementioned collision problems. Our framework
offers an effective solution for all the collisions shown in Figure 1.
Our method requires no pre-computation and directly computes
contact points, scalar functions representing signed distances be-
tween primitives, and their gradients representing the directions of
movement for collision response. Furthermore, by formulating the
distance as a function to enable gradient calculation, we achieve a
streamlined algorithm that encompasses all three steps of the colli-
sion response process, resulting in high speed, simplicity, and ease
of implementation. The entire process consists of no more than 185
lines of Python code.

2. Related Work

In this section, we review the most closely related previous work on
collision response for deformable objects, focusing on approaches
that leverage mesh-based information. For more comprehensive
surveys on these topics, we refer the reader to [AEF22; WC21;
NZXL20]. Regarding methods with DCD, Erleben [Erl18] sum-
marizes various techniques, comparing eight different methods for
finding contact points between two tetrahedra in rigid body simula-
tions.

2.1. CCD for Deformable Objects

Several techniques focusing on triangle primitives have been pro-
posed [BFA02; SSIF09; BEB12; Wan14; WCL*23], involving in-
tersection tests based on primitive elements (vertices, edges, and
faces). In particular, the method by Bridson et al. [BFA02] is con-
sidered one of the first truly robust approaches for handling colli-
sions, contacts, and friction in cloth simulations. Another approach

combines point sampling of objects with SDFs to determine when
the trajectory of points intersects with the SDF isosurface [XB17].
CCD detects collisions before they occur; therefore, it requires en-
suring an intersection-free state, which is computationally expen-
sive. Moreover, even when starting from an intersection-free state,
numerical issues can cause failures that result in objects merging.

2.2. Point-based Collisions

SDF is a popular shape representation for collision handling. It
provides efficient queries and robust inside/outside information. A
method that uses the SDF of an intersection-free pose of a char-
acter to solve self-intersections has been proposed [MZS*11], but
Chen et al. [CDY23] have pointed out its inaccuracy with large de-
formations. An alternative approach is bifurcating the SDF nodes
during construction when volumetric overlaps arise from self-
intersections [MASS15]. For edge-edge collisions, several meth-
ods have been developed, generating contact points either at edge
midpoints [FSG03] or at intersections of edges with the SDF iso-
surface [GBF03]. In particular, Fuhrmann et al. [FSG03] strongly
recommend edge testing to enhance overall accuracy. Macklin et
al. [MEM*20] proposed a method that generates contact points
through local optimization on SDFs to accurately capture sharp
point-face and edge-edge contacts. Although solutions for self-
collisions and edge-edge collisions have been proposed individ-
ually, no unified approach addresses both aspects simultaneously.
Methods that perform a sampling of the surface geometry at dis-
crete points handle collisions between objects; however, Macklin
et al. [MEM*20] highlight insufficiencies with sharp features and
edge-edge collisions. Chen et al. [CDY23] proposed a method using
tetrahedral ray traversal, which tests the validity of a given path and
computes the closest surface points as contact points. This method
is robust in providing accurate Euclidean shortest paths from points
inside the mesh to the boundary, even when self-intersections are
present. However, it does not sufficiently address edge-edge contacts
beyond simply taking midpoints, leading to missed or unresolved
edge-edge contacts (see Figure 4). Several methods for untangling
cloth layers [BRB*19; SOTC22; YMJ*17] and for volumetric ob-
jects [FL01; HTK*04; ST05] have been proposed. Erleben [Erl18]
extended the previous work to identify the most opposing surface
triangles between two overlapping tetrahedra and calculate the con-
tact normal based on those faces. Building on insights from these
methods, we propose a more concise geometric approach that ex-
tends to include volumetric and surface objects together, without
requiring a global search or history for collision response.

2.3. Integral-based Collisions

Unlike point-based methods, methods using integral values over
a certain range can handle self-intersections and edge-edge colli-
sions. The volume contact model [AFC*10; WFP12] and the inte-
gral penalty method [HFS*01] both identify overlapping volumes in
shapes and introduce constraints to eliminate or minimize these pen-
etrations. However, these models are only applicable to collisions
between volumetric objects and require significant computational
updates during deformation. Zesch et al. [ZMSL23] proposed a
method using neural collision fields for intersecting triangle pairs,
where integral values are pre-learned by a neural network, enabling
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rapid collision computation during simulation. Since it’s based on
triangle primitives, it applies to arbitrary triangle meshes after a
single network training. However, this method does not consider
triangle normals or velocity vectors, as it assumes pre-penetration
or minimal penetration initiation. This can lead to potential issues,
such as incorrect collision directions and reduced stability, particu-
larly when the initial conditions are not met (see Figure 4).

3. Method

3.1. Triangle-Triangle Intersection Test

To introduce our technique based on the triangle intersection detec-
tion method presented by Möller [Möl97], we briefly describe the
algorithm. The core of the method is to treat triangle intersection
detection as an interval overlap test along the line where the planes
containing the triangles intersect. Figure 2 illustrates the geometric
situation.

Let us denote the vertices of two triangles, T1 and T2, by
𝑽1

0 ,𝑽
1
1 ,𝑽

1
2 , and 𝑽2

0 ,𝑽
2
1 ,𝑽

2
2 , respectively; and the planes 𝜋1 and

𝜋2 in which the triangles lie. For example, the plane equation 𝜋2:
𝑵2 · 𝑿 + 𝑑2 = 0 (where 𝑿 is any point on the plane) is computed:

𝑵2 = normalize((𝑽2
1 −𝑽2

0 ) × (𝑽2
2 −𝑽2

0 )),

𝑑2 = −𝑵2 ·𝑽2
0 .

(1)

The signed distance 𝑑V1
𝑖

from each vertex of T1 to the plane 𝜋2
is calculated by substituting the vertex coordinates into the plane
equation:

𝑑V1
𝑖
= 𝑵2 ·𝑽1

𝑖 + 𝑑2, 𝑖 = 0,1,2. (2)

If all 𝑑V1
𝑖

(𝑖 = 0, 1 and 2) have the same sign, there is no intersection
state between the triangles. Otherwise, the intersection of 𝜋1 and
𝜋2 is a line, 𝑳 = 𝑶 + 𝑡𝑫, where 𝑫 = 𝑵1 ×𝑵2 is the direction of the
line. If the intervals of both triangles on 𝑳 overlap, the triangles are
determined to intersect. To compute the scalar interval [𝑡1, 𝑡2] on
𝑳, the vertices of T1 are projected onto 𝑳:

𝑝V1
𝑖
= 𝑫 · (𝑽1

𝑖 −𝑶),

𝑡1 = 𝑝V1
0
+ (𝑝V1

1
− 𝑝V1

0
)

|𝑑V1
0
|

|𝑑V1
0
− 𝑑V1

1
| .

(3)

The intersection of T2 with 𝜋1 is calculated in the same manner.
The steps of the algorithm are summarized as follows:

1. Compute the plane equation of T2.
2. Reject the intersection if T1 is on the same side.
3. Compute the plane equation of T1.
4. Reject the intersection if T2 is on the same side.
5. Compute the intersection line and intervals for each triangle.
6. Test for overlaps in the intervals.

We apply the concept of the signed distance 𝑑V 𝑗

𝑖

( 𝑗 =1 and 2) to
the collision response, which will be discussed in the next subsec-
tion. During implementation, other efficient methods for triangle
intersection detection [XMCX22] can be used to further enhance
performance.

Figure 2: The geometrical situation: T1 (blue bold line) and T2
(orange bold line) represent the original triangles. The blue dot line
triangle is the projection of T1 onto 𝜋2 using the normal vector of
𝜋2, and the orange dot line triangle is the projection of T2 onto 𝜋1
using the normal vector of 𝜋1. Candidate points 𝑸1

0 −𝑸1
3 on T1 are

derived from these projection processes.

Figure 3: Comparison of behaviors at the same frame between
vertex-only calculations and calculations at intersection points af-
ter projection. (A) Consider the scenario where a rectangular prism
and a triangle are in contact, focusing on finding the contact points
between the blue triangle and the black triangle. (B) When corrected
using the signed distance 𝑑V at the vertex, the vertex moves exces-
sively and fails to reach a contact state. (C) By utilizing the distance
𝑑 computed by our proposed method, a collision is resolved at the
minimum distance, resulting in edge-edge contacts. The upper part
of (B) and (C) shows a side view.

3.2. Computation of Scalar Functions and Gradients

In this subsection, we define scalar functions and their gradients, ex-
tending the technique proposed by Möller. While Möller’s method
focuses solely on fast triangle intersection detection, our approach
additionally defines how to compute contact points, scalar distances,
and collision responses. The idea behind our approach is that by
using a global common function (signed distance) for collision re-
sponse, we can ensure consistent handling of object collisions, even
with a primitive-based method. 𝑑V 𝑗

𝑖

represents the signed Euclidean

distance from a vertex 𝑽
𝑗

𝑖
to a point on the plane of the intersecting

triangle pair. We define the sign to be positive when the relationship
with the other triangle is valid (e.g. outside the solid, or in the order
of the predefined cloth layers), negative when it is violated, and zero
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when triangles are in contact. Hence, when the sign is negative, the
magnitude of 𝑑V 𝑗

𝑖

can be interpreted as the penetration depth rela-
tive to the plane. This penetration can be resolved by pushing the
triangle back by the same magnitude.

To handle contact on edges, it is insufficient to compute 𝑑Vj for
each vertex, as the vertex-to-plane distance alone can overestimate
or underestimate the penetration depth (see Figure 3). Therefore, we
determine the appropriate contact points from the other triangle’s
range. The range is defined by the area enclosed by the following
three types of points. Consider a triangle A paired with triangle B:

1. The vertices of triangle A, projected onto the plane of B using
the normal vector of B, corresponding to the vertices of A deter-
mined to lie within the interior of B. (For example, point 𝑸1

0 in
Figure 2.)

2. The points on triangle A, projected onto the plane of A using
the normal vector of B, corresponding to the vertices of B deter-
mined to lie within the interior of A. (For example, point 𝑸1

3 in
Figure 2.)

3. The points on the edges of triangle A, projected onto the plane
of B using the normal vector of B, corresponding to the inter-
sections of the projected edges of A with the edges of B. (For
example, points 𝑸1

1 and 𝑸1
2 in Figure 2.)

The third type of points is equal to the intersections of the projected
edges of B with the edges of A, after projecting triangle B onto the
plane of A using the normal vector of B. Given that triangles are
flat shapes, the points that define the area can be directly considered
as candidates for determining the penetration depth. Among these
candidate points, the point that can resolve the collision with the
smallest distance is selected.

The computation of the depth from T1 to T2 proceeds as follows:
First, T1 is projected onto the plane 𝜋2 using the normal vector 𝑵2
of T2. The vertices 𝑲1

0 ,𝑲
1
1 ,𝑲

1
2 of the projected T1 are computed:

𝑲1
𝑖 = 𝑽1

𝑖 − (𝑵2 · (𝑽1
𝑖 −𝑽2

0 ))𝑵2. (4)

At this point, T2 and the projected T1 are coplanar. Next, to compute
the range in which the projected T1 is contained within T2, three
vertex-triangle tests and nine edge-edge tests are performed. When
edges intersect, the intersection points are also determined. Vertices
judged to be within T2 (corresponding to the first type mentioned
above) and intersection points between intersecting edges (corre-
sponding to the third type) are candidates for points with penetration
depth. Similarly, T2 is projected onto the plane 𝜋1 of T1 using the
normal vector 𝑵2 of T2. The vertices 𝑱2

0 , 𝑱
2
1 , 𝑱

2
2 of the projected T2

are computed:

𝑱2
𝑖 = 𝑽2

𝑖 +
𝑵1 · (𝑽1

0 −𝑽2
𝑖
)

𝑵1 ·𝑵2
𝑵2. (5)

Then, three vertex-triangle tests are performed to determine the
vertices within T1 (corresponding to the second type), which are
added as candidates for points with penetration depth. The actual
candidate points, which are on T1, are denoted as 𝑸1

𝑙
(𝑙 = 0,1, . . . ).

Finally, the signed distance 𝑑Q1
𝑙

along the normal vector 𝑵2 is com-
puted. The largest absolute value of the negative signed distances
is determined to be the penetration depth from T1 to T2. The pen-
etration depth from T2 to T1 is calculated using the normal vector

𝑵1 in the same manner as described above, then the candidates 𝑸2
𝑚

(𝑚 = 0,1, . . . ) are obtained. The minimum of the two depths is used
as the magnitude of the collision response in our method.

In summary, the magnitude of the collision response depends on
the distance between T1 and T2 and is defined by the smaller of the
penetration depths for each triangle. The scalar function 𝑓 , where
𝑑Q1

𝑙
is the signed distance for the candidate points of T1 and 𝑑Q2

𝑙

for T2, is computed as:

𝑓 = min(𝑑tri1, 𝑑tri2),
𝑑tri1 = max(0.0,−𝑑Q1

𝑙
),

𝑑tri2 = max(0.0,−𝑑Q2
𝑚
).

(6)

In our method, the gradient −∇ 𝒇 of the function 𝑓 corresponds
to the normal vector of either one of the triangles, making the
calculation straightforward. The derivation of the gradient −∇ 𝒇
from 𝑓 is provided in the supplemental material.

3.3. Collision Response as a PBD Constraint

When using Position Based Dynamics (PBD) [MHHR07] for sim-
ulation, adding our scalar function as a PBD constraint enables
effective collision response. The algorithm for collision response
between two triangles in PBD is as follows, with Step 9 correspond-
ing to the constraint 𝐶 and its gradient −∇𝑪:

1. Project both triangles onto each other’s planes using 𝑵2.
2. Identify candidates with vertex-triangle and edge-edge tests.
3. Compute signed distances of candidates on T1 along 𝑵2.
4. Project both triangles onto each other’s planes using 𝑵1.
5. Identify candidates with vertex-triangle and edge-edge tests.
6. Compute signed distances of candidates on T2 along 𝑵1.
7. Compute the penetration depth 𝑑tri1 from T1 to T2.
8. Compute the penetration depth 𝑑tri2 from T2 to T1.
9. Set the PBD constraint 𝐶 = 𝑓 (see Equation 6) and resolve the

collision using the gradient −∇𝑪.

We provide the Python code of this method in the supplemental
material as a reference to the reader.

4. Results

During each simulation step, we first use Axis-Aligned Bounding
Box trees in the broad phase to roughly determine potential inter-
secting triangles. Next, we implement Möller’s method [Möl97]
to test detailed intersections in the narrow phase. Finally, our pro-
posed method is processed to resolve the intersections. We only
use DCD in our implementation. Our timing results are measured
on an Intel Core i9-11900 CPU and an NVIDIA GeForce RTX
2080 Ti GPU. We integrated our proposed code into Gaia https:
//github.com/AnkaChan/Gaia, a physics simulation soft-
ware based on XPBD [MMC16]. For the comparison with Zesch
et al. [ZMSL23], we used the pre-trained model provided by the
authors to add as a PBD constraint and its gradient. For the com-
parison with Chen et al. [CDY23], we used the built-in version in
Gaia.
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Figure 4: Accuracy comparison with previous methods. (A) With the method of Zesch et al., collisions can cause the cloth to move in the
wrong direction, resulting in penetration. (B) Our proposed method consistently corrects the mesh, allowing the cloth to fall smoothly. (C)
The method of Chen et al. can miss collisions on edges, while (D) our method detects them and avoids penetration.

Table 1: Comparison with Zesch et al. [ZMSL23]: The runtime,
measured in seconds, is the average of 10 executions when querying
a batch of 256 triangle pairs on a CPU using PyTorch.

Zesch et al. Our method

Runtime 3.21×10−3 1.14×10−3

Table 2: Comparison with Chen et al. [CDY23]: The runtime, mea-
sured in seconds, is the average per frame on a CPU.

XPBD Detection Response

Chen et al. 6.40×10−1 9.134×10−2 5.274×10−3

Ours 5.71×10−1 9.414×10−4 3.624×10−5

4.1. Comparisons with Previous Work

We compare our approach with two methods: the triangle-
primitive-based collision detection method using a neural network
(NN) [ZMSL23] and the tetrahedral ray traversal method [CDY23],
which effectively handles self-collisions in point-based methods.
The performance comparison results are shown in Tables 1 and 2.
For the comparison with the NN-based method, we followed the
data generation approach described in [ZMSL23], preparing 256
normalized random triangle pairs. Both collision response algo-
rithms were implemented in PyTorch. For the comparison with the
point-based method, we prepared a scene consisting of four elas-
tic objects dropping (totally, 11,628 vertices and 23,240 faces). As
shown in Table 1, our method demonstrates comparable perfor-
mance to that of the NN-based method. From Table 2, it can be seen
that our method is more than 100 times faster than the point-based
method in ’Response’, which is related to each proposal.

For accuracy comparison, we present the simulation results of
cloth dropping onto an ellipsoid in Figures 4 (A) and (B), compar-
ing our method with that of Zesch et al. In their method, when a
collision occurs, the cloth mesh moves in the wrong direction, re-
sulting in deep penetration. This instability stems from the predicted
value and the absence of normal information in the collision inte-
gration, which can result in overall inconsistency, especially when
their DCD operates after penetration has occurred. In contrast, our
proposed method uses scalar quantities in the normal direction for
local triangle-triangle intersections, enabling appropriate correc-
tions that maintain the overall consistency of the object. We also
compare our method with Chen et al.’s approach, as shown in Fig-
ures 4 (C) and (D). Their method considers edge-edge collisions
only at the midpoint between vertices, which can cause difficulties

with collisions occurring at other points along the edge, especially
when using a coarse mesh, resulting in penetration. In contrast,
our proposed method handles collisions at arbitrary points on an
edge, effectively managing edge-related issues regardless of mesh
resolution.

4.2. Fundamental Test Cases

We conducted a fundamental collision test, including the edge case
as proposed by Erleben [Erl18]. We successfully completed the
test without causing breakdowns. The results are illustrated in the
supplemental material.

Our method also handles cases where triangles intersect per-
pendicularly, which can lead to degeneration. One example of the
collision handling steps for such a case is visualized in Figure 5.
When degeneration occurs and the projected triangle becomes a
line segment, the intersection points are back-projected onto the
two overlapping edges. Although the corresponding pre-projection
points yield two distinct points, the algorithm calculates the signed
distances for each, ensuring accurate results. For a more detailed
case-by-case validation, please refer to the supplemental material,
which demonstrates that the corrections function correctly in all
scenarios.

Note that when a triangle has already degenerated (e.g., its area
becomes zero), our algorithm may fail. However, in such cases,
most physics-based simulation methods would also not function
correctly, which should be taken into account.

4.3. Self-Collision Handling

Our method can handle self-collisions within the same framework.
A challenging example of self-collisions is shown in Figure 6, where
a squishy ball collides with the ground. In simulations without
self-collision handling, the ball gets tangled; on the other hand,
when self-collision handling is activated, all self-intersections are
appropriately resolved.

4.4. Layered Cloths Experiments

Our method can be applied to thin objects such as clothes, where
the positional relationship between cloth layers along the direction
of the normal vector is predefined. In the collision between the
elastic octopus model and three-layered clothes, as shown in Fig-
ure 7, appropriate movements of both the cloth and elastic object
are achieved. In this example, our framework can handle three types
of collisions: cloth-to-cloth, octopus-to-cloth, and self-collisions of
the octopus.

submitted to EUROGRAPHICS 2025.



6 of 9 paper1071 / A Unified Discrete Collision Framework for Triangle Primitives

Figure 5: Step-by-step collision handling process for an example where two triangles intersect perpendicularly. The normal vector of the
triangle in the red frame is set to (0,1,0), and that of the triangle in the blue frame to (0,0,1). (1) Initial state. (2) Both triangles are projected
using the normal vector of the second triangle (corresponding to step 1 in Section 3.3). (3) Candidate points are calculated (corresponding
to step 2 in Section 3.3). (4) Signed distances are calculated at each point, determining the penetration depth for the first triangle (a point
enclosed by a black circle, corresponding to steps 3 and 7 in Section 3.3). (5)-(7) The same process is applied for the second triangle
(corresponding to steps 4-6 and 8 in Section 3.3). (8) The penetration depth calculated for both triangles in steps 7 and 8 in Section 3.3 is used
to compute Equation 6. The candidate points with the smallest depth from the second triangle are chosen. (9) Since the gradient corresponds
to the normal vector of the first triangle, it is applied to correct the collision (corresponding to step 9 in Section 3.3). (10) Top-down view: the
blue triangle is before the correction and the yellow triangle is after the correction. Only a simple push-out correction applied to one of the
triangles is shown.

Figure 8 demonstrates that even when a simulation begins with
intersecting garments, the method successfully resolves these col-
lisions. This indicates the method’s applicability to scenarios in-
volving clothing layers, where intersections may occur before the
physics-based simulation begins. Note that the layering order of the
cloth is predefined, similar to the example in Figure 7.

4.5. Large-Scale Case

The robustness of our method was evaluated with large datasets.
Figure 9 shows an example where 108 octopus models with self-
collisions are falling down. Our method provides a robust collision
handling solution, effectively managing complex, high-speed colli-
sions involving numerous interactions.

4.6. Starting from a Penetrated or Contact State

Our method is capable of resolving pre-existing intersections. Be-
sides the example shown in Figure 8, another demonstration is
shown in Figure 10. In this example, all intersecting pairs are exam-
ined using the substep method outlined in Algorithm 1 of Macklin
et al.’s paper [MSL*19], where the number of substeps 𝑛steps is set
to 60. Although the initial state contains penetrations, turning on
collision handling progressively applies collision constraints to the
intersecting pairs. In this case, all existing triangle intersections are
resolved within 10 frames.

As shown in Figure 11, our method can also handle collisions for
layered objects like an onion, starting from a state where the layers
are already in contact before the simulation begins.

4.7. Performance

Performance metrics of the above experiments are shown in Ta-
ble 3. Our method only incurs a small overhead in terms of the total
calculation time for each frame. The material solver in the XPBD
section was executed either on the CPU or GPU, and the last col-
umn on the right indicates which was chosen for each scene. All
collision handling computations were performed on the CPU. ’Con-
tact Type’ indicates whether the collision was resolved by Point or
Edge. A higher percentage of Edge suggests that many collisions
were resolved at contact points on edges.

4.8. Limitations

Our method follows the inherent limitations of DCD. That is, when
attempting to handle large time steps or fast movements using only
DCD, deep penetrations or slipping through may occur, potentially
leading to a failure to fully resolve the objects or causing them to
penetrate each other again. By incorporating CCD, the limitations of
DCD can be overcome, and the robustness of collision handling can
be greatly improved. Our method focuses on the normal directions
of two triangles, so when the two normal vectors face the same di-
rection or when the correction direction cannot be determined based
on the normal vector, incorrect corrections may occur, or the solu-
tion may fail to converge. However, if the overlapping relationships,
such as in layered cloth, can be pre-determined, problems do not
occur. Issues arise in situations like crumpling cloth, where the cloth
self-collides or lacks a consistent overlapping pattern. To address
these problems, it is necessary to combine methods that geomet-
rically determine the normal direction for collision response, such

submitted to EUROGRAPHICS 2025.
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Table 3: Performance results. Times are measured in seconds. The items labeled GPU in the far-right column indicate that the projection
solver for constraints in XPBD was executed using GPU parallel processing. Items without labels were executed on the CPU. ’Response’
refers to the time for our method.

Number of Contact Type % Frame Time Breakdown of Average Frame Time

Vert. Tri. Point Edge Avrg. Max. XPBD Broad Phase Detection Response

Four octopuses falling (Table 2) 11,628 23,240 21.65% 78.35% 1.400 1.651 5.709×10−1 7.318×10−1 9.414×10−4 3.624×10−5

Self-intersecting (Figure 6) 170,353 340,698 14.16% 85.84% 1.703 3.239 5.877×10−2 6.765×10−1 6.717×10−3 4.567×10−4 GPU
Layered cloth and an octopus (Figure 7) 6,174 11,954 20.21% 79.79% 1.705 2.932 1.587×10−1 1.382 1.186×10−3 2.028×10−4

Garment (Figure 8) 40,930 81,340 21.06% 78.94% 2.144 2.213 1.877×10−1 3.803×10−2 3.453×10−2 1.688×10−3

Lots of octopuses falling (Figure 9) 104,652 209,160 24.86 % 75.14 % 3.521×10+1 9.791×10+1 4.839 2.069×10+1 1.481×10−1 4.697×10−2 GPU
Sharp contact (Figure 10) 86 134 31.94% 68.06% 5.575×10−3 6.362×10−3 4.185×10−4 3.716×10−3 3.300×10−6 7.700×10−6

Triangle contact (Figure 11) 21,590 43,160 19.89% 80.11% 1.743 3.813 8.118×10−1 3.712×10−2 1.438×10−2 3.730×10−5

Figure 6: Example of complex self-collisions. Without self-collision
handling (top row, bottom left) and with self-collision handling
(middle row, bottom right).

as the approach proposed by Zhao et al. [ZYL13]. Alternatively, if
a simulation begins with an intersection-free state, the sign of the
normal direction can be determined by referring to the relationship
between the two triangles when they are not intersecting.

5. Conclusion

We presented a novel formulation for handling collisions based
on triangle intersection relationships and demonstrated its use as
a unified collision handling solution for various simulation sce-
narios. Notably, we succeeded in generating contact points that do
not miss edge-edge collisions and benefited from primitive-based
self-collision handling, integrating them into the same framework.
Moreover, as long as the normal direction for correction can be
defined, the method resolves collisions quickly for both volumetric
objects and thin objects like cloth.

Figure 7: Collision handling between layered cloths. Initial state
and 120th frame (zoomed in). Collisions between thin objects are
handled within the same framework used for volumetric object col-
lisions.

Figure 8: Collision handling between layered cloths. The left image
shows the first frame, while the right shows the 6th frame, where all
intersections have been resolved.
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