
Supplemental Materials for
“A Unified Discrete Collision Framework for

Triangle Primitives”

Submission ID: paper1071

1 Detailed Examination of Cases Where the

Projected Triangle Degenerates.

Examples are provided for cases where two triangles intersect perpendicularly
and degenerate upon projection, categorized according to their corrected
contact states: Point-Triangle, Edge-Triangle, Point-Point, Edge-Edge, and
Point-Edge cases.

The figure shows the step-by-step process for each example where two
triangles intersect perpendicularly. The normal vector of the red-bordered
triangle is (0,1,0), and the normal vector of the blue-bordered triangle is
(0,0,1). (1) Initial state. (2) Project the triangles along the normal vector
of the second triangle (corresponding to Step 1 in Section 3.3 of the paper).
(3) Compute candidate points, calculate signed distances at each point, and
determine the penetration depth for the first triangle (corresponding to Steps
2, 3, and 7 in Section 3.3 of the paper). (4)-(5) Perform the same processing
for the second triangle (corresponding to Steps 4-6 and 8 in Section 3.3 of
the paper). (6) Use Equation (6) from the paper to calculate the penetration
depths of both triangles, as obtained in Steps 7 and 8 in Section 3.3 of the
paper. Select the candidate point of the second triangle with the smallest
penetration depth magnitude. (7) Apply the gradient, which is the normal
vector of the first triangle, to resolve the collision (corresponding to Step 9
in Section 3.3 of the paper). (8) Top view of the figure: blue indicates the
state before resolution and yellow indicates the state after resolution. In this
figure, a simple push-out correction is applied to one of the triangles. The
meaning of the step numbers is consistent across all figures.

1



1.1 Point-Triangle case

Figure 1: Point-Triangle case when the projected line segment fits inside the
other triangle.

Figure 2: Point-Triangle case when the projected line segment does not fit
inside the other triangle.

2



1.2 Edge-Triangle case

Figure 3: Edge-Triangle case when the projected line segment fits inside the
other triangle. (The case is also included in the paper.)

Figure 4: Edge-triangle case when the projected line segment does not fit
inside the other triangle.

3



1.3 Point-Point case

Figure 5: Point-Point case when the projected line segment fits inside the
other triangle.

Figure 6: Point-Point case when the projected line segment does not fit inside
the other triangle.

4



1.4 Edge-Edge case

Figure 7: Edge-Edge case

Figure 8: When a projected triangle degenerates onto an edge of the other
triangle, it is considered to be in a touching state, and thus it is determined
that there is no intersection when intersecting test.

5



1.5 Point-Edge case

Figure 9: Point-Edge case when the projected line segment fits inside the
other triangle.

Figure 10: Point-Edge case when the projected line segment does not fit
inside the other triangle.

6



2 Erleben Test

We conducted fundamental collision tests proposed by Erleben. We success-
fully completed the test without causing breakdowns. There are six cases:
Spikes, Spike and wedge, Wedges, Spike in hole, Spike in crack, and Wedge
in crack. In some cases, edge collisions occur during the dropping process.

Figure 11: Erleben test results.

7



3 Derivation of the Gradient −∇f from the

Function f in Section 3.2 of the paper

In our method, the gradient −∇f of the function f corresponds to the
normal vector of either one of the triangles. We show the derivation through
the following equations.

We begin with Equation 6 of the paper for the function f :

f = min(dtri1, dtri2),

dtri1 = max(0.0,−dQ1
l
),

dtri2 = max(0.0,−dQ2
l
).

Here, f is determined by the minimum of dtri1 and dtri2, which are them-
selves dependent on dQ1

l
and dQ2

l
. These terms, dQ1

l
and dQ2

l
, are expressed

as:

dQ1
l
= N2 ·Q1

l + d2,

and
dQ2

l
= N1 ·Q2

l + d1,

whereN1 andN2 are the normal vectors corresponding to triangle T1 and T2,
respectively. In the case where one of the triangles dominates the minimum,
the function f takes the form:

f = max(0.0,−(N ·Q+ d)),

where N is the normal vector of the corresponding triangle, and Q is the
selected point among the candidates.

Finally, the gradient of f with respect to Q is given by the gradient of
the dot product term. Since the gradient of N ·Q with respect to Q is N ,
we conclude that:

−∇f = N .

4 Python Code

Here, we provide the Python code for finding the intersecting point on the
triangle pair and calculating the PBD constraint C and its gradient ∇C.

8



The code is all-inclusive, standalone, and includes a snippet of Möller’s col-
lision detection method. Out of the 185 lines of code, 65 lines are dedicated
to Möller’s collision detection, while the remaining 120 lines pertain to the
method presented. When using this code in practice, pass the triangle coor-
dinates as follows:

triangle1 = np.array([[0.375003, 0.299691, 0.299992],

[-0.224997, 0.299691, -0.300008],

[-0.224998, 0.299691, 0.299994]])

triangle2 = np.array([[-0.0749846, 0.26, 0.0999057],

[0.125025, 0.26, 0.0999057],

[-0.1750912, 0.36939, 0.0999057]])

Listing 1: Our DCD code

1 import numpy as np
2

3 def swap(d0_, d1_, d2_, tri0, tri1, tri2):
4 if (d0_ <= 0 and d1_ >= 0 and d2_ >= 0) or (d0_ >= 0 and d1_

<= 0 and d2_ <= 0):
5 v0_ = tri1
6 v1_ = tri0 # the vertex on the opposite side
7 v2_ = tri2
8 d_ = d0_
9 d0_ = d1_

10 d1_ = d_
11 d2_ = d2_
12

13 elif (d0_ >= 0 and d1_ <= 0 and d2_ >= 0) or (d0_ <= 0 and
d1_ >= 0 and d2_ <= 0):

14 v0_ = tri0
15 v1_ = tri1 # the vertex on the opposite side
16 v2_ = tri2
17

18 elif (d0_ >= 0 and d1_ >= 0 and d2_ <= 0) or (d0_ <= 0 and
d1_ <= 0 and d2_ >= 0):

19 v0_ = tri0
20 v1_ = tri2 # the vertex on the opposite side
21 v2_ = tri1
22 d_ = d1_
23 d0_ = d0_
24 d1_ = d2_
25 d2_ = d_
26 return d0_, d1_, d2_, v0_, v1_, v2_
27

28 def swap_minmax(t1_, t2_, d0_, d2_, v0_, v2_):

9



29 if (t1_ > t2_):
30 t_ = t1_
31 t1_ = t2_
32 t2_ = t_
33 d_ = d0_
34 d0_ = d2_
35 d2_ = d_
36 v_ = v0_
37 v0_ = v2_
38 v2_ = v_
39 return t1_, t2_, d0_, d2_, v0_, v2_
40

41 def gen_t(N_, tri_, D_, d_):
42 e = 0.0 # adjust this threshold value based on the situation

(e.g. cloth simulation).
43 if d_[0] <= e and d_[1] <= e and d_[2] <= e:
44 return None, None
45 if d_[0] >= -e and d_[1] >= -e and d_[2] >= -e:
46 return None, None
47 d0_, d1_, d2_, v0_, v1_, v2_ = swap(d_[0], d_[1], d_[2], tri_

[0], tri_[1], tri_[2])
48 p0_ = np.dot(D_, v0_)
49 p1_ = np.dot(D_, v1_)
50 p2_ = np.dot(D_, v2_)
51

52 t1 = p0_ + (p1_ - p0_) * abs(d0_ / (d0_ - d1_))
53 t2 = p2_ + (p1_ - p2_) * abs(d2_ / (d2_ - d1_))
54 t1, t2, d0_, d2_, v0_, v2_ = swap_minmax(t1, t2, d0_, d2_,

v0_, v2_)
55 return t1, t2
56

57 def line_intersection_on_same_plane(p1, p2, p3, p4, v1, v2):
58 d1 = p2 - p1
59 d2 = p4 - p3
60 n = np.cross(d1, d2)
61 if np.linalg.norm(n) == 0:
62 return None
63 denom = np.dot(n, n)
64 if denom == 0:
65 return None
66 v = p3 - p1
67 t1 = np.dot(np.cross(v, d2), n) / denom
68 t2 = np.dot(np.cross(v, d1), n) / denom
69 if (0 <= t2 and t2 <= 1) and (0 <= t1 and t1 <= 1):
70 return v1 + t1 * (v2 - v1)
71 return None
72

73 def inside_triangle_on_same_plane(triangle, p):

10



74 ab = triangle[1] - triangle[0]
75 bp = p - triangle[1]
76

77 bc = triangle[2] - triangle[1]
78 cp = p - triangle[2]
79

80 ca = triangle[0] - triangle[2]
81 ap = p - triangle[0]
82

83 c1 = np.cross(ab, bp)
84 c2 = np.cross(bc, cp)
85 c3 = np.cross(ca, ap)
86

87 if (np.dot(c1, c2) > 0 and np.dot(c1, c3) > 0):
88 return True
89 return False
90

91 def find_intersection_point(N, p0, p, line_dir):
92 if (np.dot(N, line_dir) == 0.0):
93 return None
94 t = np.dot(N, p0 - p) / np.dot(N, line_dir)
95 intersection_point = p + t * line_dir
96 return intersection_point
97

98 #Eq. 1
99 N1 = np.cross(triangle1[1] - triangle1[0], triangle1[2] -

triangle1[0])
100 N1 = N1 / np.linalg.norm(N1)
101 d1 = -np.dot(N1, triangle1[0])
102 N2 = np.cross(triangle2[1] - triangle2[0], triangle2[2] -

triangle2[0])
103 N2 = N2 / np.linalg.norm(N2)
104 d2 = -np.dot(N2, triangle2[0])
105

106 d_on_vertex = np.zeros((2, 3, 1))
107 for i in range(3):
108 d_on_vertex[0][i] = np.dot(N2, triangle1[i]) + d2
109 for i in range(3):
110 d_on_vertex[1][i] = np.dot(N1, triangle2[i]) + d1
111

112 # Section 3.1 Moller’s intersecting test
113 D = np.cross(N1, N2)
114 D = D / np.linalg.norm(D)
115 t1, t2 = gen_t(N2, triangle1, D, d_on_vertex[0])
116 if (t1 is None):
117 exit()
118 t3, t4 = gen_t(N1, triangle2, D, d_on_vertex[1])
119 if (t3 is None):

11



120 exit()
121 if not (t2 >= t3 and t4 >= t1):
122 exit()
123

124 # Section 3.2
125 # Eq. 4
126 P = np.zeros((2, 3, 3))
127 for i in range(3):
128 P[0][i] = triangle1[i] - np.dot(N2, triangle1[i] - triangle2

[0]) * N2
129 for i in range(3):
130 P[1][i] = triangle2[i] - np.dot(N1, triangle2[i] - triangle1

[0]) * N1
131

132 # Eq. 5
133 Q = np.zeros((2, 3, 3))
134 for i in range(3):
135 Q[0][i] = find_intersection_point(N1, triangle1[0], triangle2

[i], N2)
136 for i in range(3):
137 Q[1][i] = find_intersection_point(N2, triangle2[0], triangle1

[i], N1)
138

139 # Append the candidates of each triangle
140 intersections1 = []
141 d_tri1 = 0.0
142 d_tri2 = 0.0
143 for i in range(3):
144 if (inside_triangle_on_same_plane(triangle2, P[0][i])):
145 if (d_tri1 < -d_on_vertex[0][i]):
146 d_tri1 = -d_on_vertex[0][i]
147 if (Q[0][i] is not None):
148 if (inside_triangle_on_same_plane(triangle1, Q[0][i])):
149 intersections1.append(Q[0][i])
150 for j in range(3):
151 intersection = line_intersection_on_same_plane(P[0][i], P

[0][(i+1)%3], triangle2[j], triangle2[(j+1)%3],
triangle1[i], triangle1[(i+1)%3])

152 if intersection is not None:
153 intersections1.append(intersection)
154

155 intersections2 = []
156 for i in range(3):
157 if (inside_triangle_on_same_plane(triangle1, P[1][i])):
158 if (d_tri2 < -d_on_vertex[1][i]):
159 d_tri2 = -d_on_vertex[1][i]
160 if (Q[1][i] is not None):
161 if (inside_triangle_on_same_plane(triangle2, Q[1][i])):

12



162 intersections2.append(Q[1][i])
163 for j in range(3):
164 intersection = line_intersection_on_same_plane(P[1][i], P

[1][(i+1)%3], triangle1[j], triangle1[(j+1)%3],
triangle2[i], triangle2[(i+1)%3])

165 if intersection is not None:
166 intersections2.append(intersection)
167

168 for v in intersections1:
169 candidate = np.dot(N2, v) + d2
170 if (d_tri1 < -candidate):
171 d_tri1 = -candidate
172

173 for v in intersections2:
174 candidate = np.dot(N1, v) + d1
175 if (d_tri2 < -candidate):
176 d_tri2 = -candidate
177

178 if (d_tri1 > 1.0e-7 and d_tri1 < d_tri2):
179 C = d_tri1
180 dC = N2 # Define dC as the direction in which C decreases.

Mathematically, -dC = N2.
181 if (d_tri2 > 1.0e-7 and d_tri2 < d_tri1):
182 C = d_tri2
183 dC = N1 # Define dC as the direction in which C decreases.

Mathematically, -dC = N1.
184

185 print(C, dC)

13


